Checkpoint 1 Post
Checkpoint 1 blog post for AP CSA
/* This is wrapper class...
Objective would be to push more functionality into this Class to enforce consistent definition
*/
public abstract class Generics {
public final String masterType = "Generic";
private String type; // extender should define their data type
// generic enumerated interface
public interface KeyTypes {
String name();
}
protected abstract KeyTypes getKey(); // this method helps force usage of KeyTypes
// getter
public String getMasterType() {
return masterType;
}
// getter
public String getType() {
return type;
}
// setter
public void setType(String type) {
this.type = type;
}
// this method is used to establish key order
public abstract String toString();
// static print method used by extended classes
public static void print(Generics[] objs) {
// print 'Object' properties
System.out.println(objs.getClass() + " " + objs.length);
// print 'Generics' properties
if (objs.length > 0) {
Generics obj = objs[0]; // Look at properties of 1st element
System.out.println(
obj.getMasterType() + ": " +
obj.getType() +
" listed by " +
obj.getKey());
}
// print "Generics: Objects'
for(Object o : objs) // observe that type is Opaque
System.out.println(o);
System.out.println();
}
}
public class Car extends Generics {
// Class data
public static KeyTypes key = KeyType.title; // static initializer
public static void setOrder(KeyTypes key) { Car.key = key; }
public enum KeyType implements KeyTypes {title, name, year, model}
// Instance data
private final String name;
private final int year;
private final String model;
/* constructor
*
*/
public Car(String name, int year, String model)
{
super.setType("Car");
this.name = name;
this.year = year;
this.model = model;
}
/* 'Generics' requires getKey to help enforce KeyTypes usage */
@Override
protected KeyTypes getKey() { return Car.key; }
/* 'Generics' requires toString override
* toString provides data based off of Static Key setting
*/
@Override
public String toString()
{
String output="";
if (KeyType.name.equals(this.getKey())) {
output += this.name;
} else if (KeyType.year.equals(this.getKey())) {
output += "00" + this.year;
output = output.substring(output.length() - 2);
} else if (KeyType.model.equals(this.getKey())) {
output += this.model;
} else {
output += super.getType() + ": " + this.name + ", " + this.model + ", " + this.year;
}
return output;
}
// Test data initializer
public static Car[] cars() {
return new Car[]{
new Car("Honda", 2016, "Odyssey"),
new Car("Toyota", 2012, "Corolla"),
new Car("Lexus", 2019, "UX"),
new Car("Acura", 2016, "Integra"),
new Car("Kia", 2023, "Forte"),
new Car("Lamborghini", 2022, "Huracan EVO")
};
}
/* main to test Animal class
*
*/
public static void main(String[] args)
{
// Inheritance Hierarchy
Car[] objs = cars();
// print with title
Car.setOrder(KeyType.title);
Car.print(objs);
// print name only
Car.setOrder(KeyType.name);
Car.print(objs);
}
}
Car.main(null);
public class Sport extends Generics {
// Class data
public static KeyTypes key = KeyType.title; // static initializer
public static void setOrder(KeyTypes key) {Sport.key = key;}
public enum KeyType implements KeyTypes {title, name, numPlayers}
// Instance data
private final String name;
private final int numPlayers;
// Constructor
Sport(String name, int numPlayers)
{
this.setType("Sport");
this.name = name;
this.numPlayers = numPlayers;
}
/* 'Generics' requires getKey to help enforce KeyTypes usage */
@Override
protected KeyTypes getKey() { return Sport.key; }
/* 'Generics' requires toString override
* toString provides data based off of Static Key setting
*/
@Override
public String toString() {
String output="";
if (KeyType.name.equals(this.getKey())) {
output += this.name;
} else if (KeyType.numPlayers.equals(this.getKey())) {
output += "00" + this.numPlayers;
output = output.substring(output.length() - 2);
} else {
output = super.getType() + ": " + this.name + ", " + this.numPlayers;
}
return output;
}
// Test data initializer
public static Sport[] sports() {
return new Sport[]{
new Sport("Soccer", 22),
new Sport("Basketball", 10),
new Sport("Volleyball", 12),
new Sport("Tennis", 2),
new Sport("Football", 22)
};
}
public static void main(String[] args)
{
// Inheritance Hierarchy
Sport[] objs = sports();
// print with title
Sport.setOrder(KeyType.title);
Sport.print(objs);
// print flavor only
Sport.setOrder(KeyType.name);
Sport.print(objs);
// print numPlayers only
Sport.setOrder(KeyType.numPlayers);
Sport.print(objs);
}
}
Sport.main(null);
/**
* Implementation of a Double Linked List; forward and backward links point to adjacent Nodes.
*
*/
public class LinkedList<T>
{
private T data;
private LinkedList<T> prevNode, nextNode;
/**
* Constructs a new element
*
* @param data, data of object
* @param node, previous node
*/
public LinkedList(T data, LinkedList<T> node)
{
this.setData(data);
this.setPrevNode(node);
this.setNextNode(null);
}
/**
* Clone an object,
*
* @param node object to clone
*/
public LinkedList(LinkedList<T> node)
{
this.setData(node.data);
this.setPrevNode(node.prevNode);
this.setNextNode(node.nextNode);
}
/**
* Setter for T data in DoubleLinkedNode object
*
* @param data, update data of object
*/
public void setData(T data)
{
this.data = data;
}
/**
* Returns T data for this element
*
* @return data associated with object
*/
public T getData()
{
return this.data;
}
/**
* Setter for prevNode in DoubleLinkedNode object
*
* @param node, prevNode to current Object
*/
public void setPrevNode(LinkedList<T> node)
{
this.prevNode = node;
}
/**
* Setter for nextNode in DoubleLinkedNode object
*
* @param node, nextNode to current Object
*/
public void setNextNode(LinkedList<T> node)
{
this.nextNode = node;
}
/**
* Returns reference to previous object in list
*
* @return the previous object in the list
*/
public LinkedList<T> getPrevious()
{
return this.prevNode;
}
/**
* Returns reference to next object in list
*
* @return the next object in the list
*/
public LinkedList<T> getNext()
{
return this.nextNode;
}
}
import java.util.Iterator;
/**
* Queue Iterator
*
* 1. "has a" current reference in Queue
* 2. supports iterable required methods for next that returns a generic T Object
*/
class QueueIterator<T> implements Iterator<T> {
LinkedList<T> current; // current element in iteration
// QueueIterator is pointed to the head of the list for iteration
public QueueIterator(LinkedList<T> head) {
current = head;
}
// hasNext informs if next element exists
public boolean hasNext() {
return current != null;
}
// next returns data object and advances to next position in queue
public T next() {
T data = current.getData();
current = current.getNext();
return data;
}
}
/**
* Queue: custom implementation
* @author John Mortensen
*
* 1. Uses custom LinkedList of Generic type T
* 2. Implements Iterable
* 3. "has a" LinkedList for head and tail
*/
public class Queue<T> implements Iterable<T> {
LinkedList<T> head = null, tail = null;
/**
* Add a new object at the end of the Queue,
*
* @param data, is the data to be inserted in the Queue.
*/
public void add(T data) {
// add new object to end of Queue
LinkedList<T> tail = new LinkedList<>(data, null);
if (this.head == null) // initial condition
this.head = this.tail = tail;
else { // nodes in queue
this.tail.setNextNode(tail); // current tail points to new tail
this.tail = tail; // update tail
}
}
/**
* Returns the data of head.
*
* @return data, the dequeued data
*/
public T delete() {
T data = this.peek();
if (this.tail != null) { // initial condition
this.head = this.head.getNext(); // current tail points to new tail
if (this.head != null) {
this.head.setPrevNode(tail);
}
}
return data;
}
/**
* Returns the data of head.
*
* @return this.head.getData(), the head data in Queue.
*/
public T peek() {
return this.head.getData();
}
/**
* Returns the head object.
*
* @return this.head, the head object in Queue.
*/
public LinkedList<T> getHead() {
return this.head;
}
/**
* Returns the tail object.
*
* @return this.tail, the last object in Queue
*/
public LinkedList<T> getTail() {
return this.tail;
}
/**
* Returns the iterator object.
*
* @return this, instance of object
*/
public Iterator<T> iterator() {
return new QueueIterator<>(this.head);
}
}
/**
* Queue Manager
* 1. "has a" Queue
* 2. support management of Queue tasks (aka: titling, adding a list, printing)
*/
class QueueManager<T> {
// queue data
private final String name; // name of queue
private int count = 0; // number of objects in queue
public final Queue<T> queue = new Queue<>(); // queue object
/**
* Queue constructor
* Title with empty queue
*/
public QueueManager(String name) {
this.name = name;
}
/**
* Queue constructor
* Title with series of Arrays of Objects
*/
public QueueManager(String name, T[]... seriesOfObjects) {
this.name = name;
this.addList(seriesOfObjects);
}
/**
* Add a list of objects to queue
*/
public void addList(T[]... seriesOfObjects) { //accepts multiple generic T lists
for (T[] objects: seriesOfObjects)
for (T data : objects) {
this.queue.add(data);
this.count++;
}
}
/**
* Print any array objects from queue
*/
public void printQueue() {
System.out.println(this.name + " count: " + count);
System.out.print(this.name + " data: ");
for (T data : queue)
System.out.print(data + " ");
System.out.println();
}
}
/**
* Driver Class
* Tests queue with string, integers, and mixes of Classes and types
*/
class QueueTester {
public static void main(String[] args)
{
// Create iterable Queue of NCS Generics
Car.setOrder(Car.KeyType.name);
Sport.setOrder(Sport.KeyType.name);
// Illustrates use of a series of repeating arguments
QueueManager qGenerics = new QueueManager("My Generics",
Car.cars(),
Sport.sports()
);
qGenerics.printQueue();
// Create iterable Queue of Mixed types of data
QueueManager qMix = new QueueManager("Mixed");
qMix.queue.add("Start");
qMix.addList(
Car.cars(),
Sport.sports()
);
qMix.queue.add("End");
qMix.printQueue();
}
}
QueueTester.main(null);